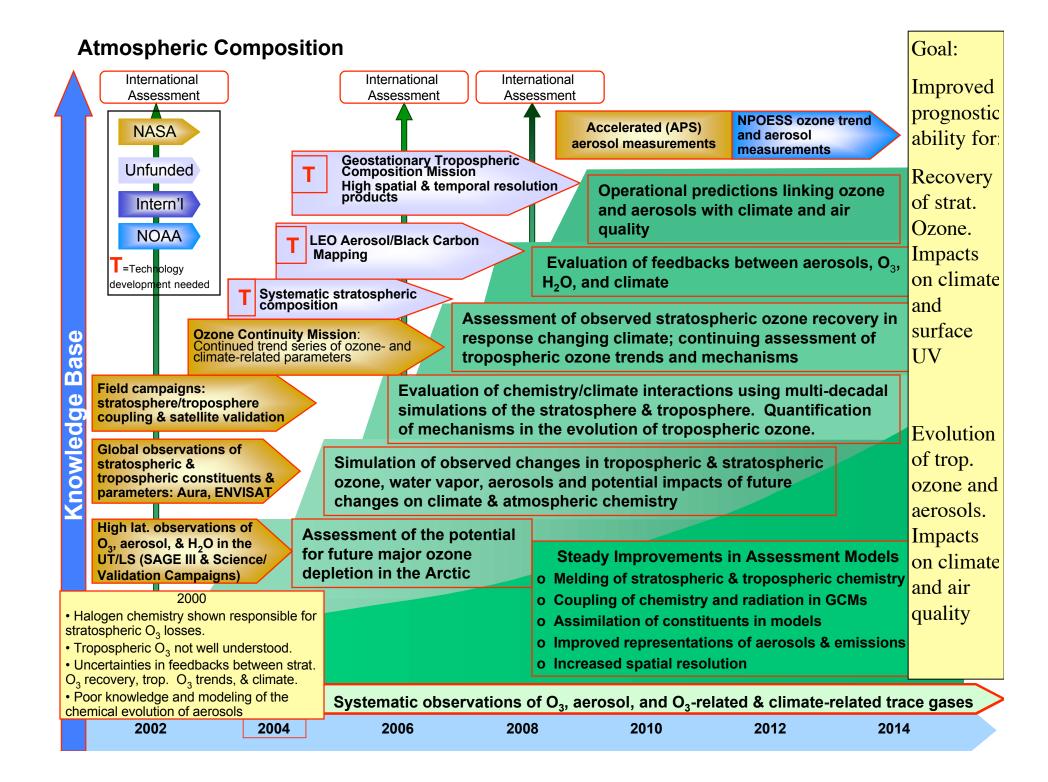

Understanding the Trace Constituent and Particulate Composition of the Earth's Atmosphere and Predicting its Future Evolution

Background and Issues:


- The atmosphere is a "fast integrator" for the Earth, transporting surface emissions quickly around the world (~ week), between hemispheres (~ year), and to high altitudes (~ 3-5 years to 50 km)
- Human activity is significantly changing atmospheric composition in ways that can affect the global, regional, and local environment
- Key Environmental Issues:
 - Global Ozone Depletion and its Impact on Surface UV Radiation
 - Climate Forcing by Radiatively Active Gases and Aerosols
 - Global Air Quality

Global model simulation of tropospheric ozone columns

Why NASA?

- -Global Observations of Ozone, Aerosols, and Related Trace Gases
- -Study of Atmospheric Processes Using Unique Airborne Platform Sensor Suite Combinations
- -Modeling and Data Assimilation to Provide Atmospheric Data Products and Forecasts
- *–Note:* NASA roles in Research and Monitoring are Called for under Federal Law (NASA Authorization Act, Clean Air Act)

Anticipated Progress in Answering the Questions:

Where we are now

Halogen chemistry largely responsible for stratospheric O₃ loss, but exact % unknown

Connection between climate change and stratospheric O_3 chemistry recognized but effects on O_3 recovery not well understood

Radiatively important change in atmospheric water observed but the temporal variation is not quantitatively understood

Spatially varying trends in tropospheric O₃ observed but not understood

Tropospheric O_3 shown to be transported over long distances, but the contributions of such transported O_3 to regional budgets are not understood

Geographical and vertical distribution of atmospheric aerosols are identified but the evolution, composition and properties are not understood

Where we plan to be

Quantitative components of O_3 loss (e.g., chemistry vs. dynamics) are understood

Integrated chemistry and climate models provide improved prognostic ability on the extent and timing of O_3 recovery

Observed changes in atmospheric water are understood and future changes can be predicted

Geographic evolution of tropospheric O_3 is quantified and understood

The extent of regional pollution that is attributable to the long-range transport of ozone is quantified

Aerosol evolution, composition, vertical distribution, and radiative impacts are quantified and this information is used in climate models

Anticipated Outcomes and Uses of Results

Result / Capability

Global ozone time series, variability, and trends quantified at regional spatial resolution. Chemical sources and sinks identified and quantified. Chemistry-climate feedbacks quantified and assessed.

Quantification of black carbon/aerosol and greenhouse gas sources and sinks.

Quantification of controlling processes and their interactions.

Global Air Quality: High temporal and spatial resolution composition measurements. Global climate change impacts on regional air quality and the influence of regional air quality on the global climate.

Products / Uses for Decision Support

Quantitative global monitoring & evaluation tools: (coupled stratosphere/troposphere assessment models) to assess the efficacy of the Montreal Protocol on ozone recovery and to assess effects of climate change on ozone recovery and future atmospheric composition.

Maps, data products and information on relationships among them as input for decision support systems. Simulation models that enable "If ..., then..." scenarios to be explored.

Climate Forecasts: Projections of changes in carbon, chemical, and aerosol sources and sinks, due to combinations of real-world forcings of global environmental change with sub-regional specificity and good reliability for ~6 mos. to 2 years into the future; and for 50-100 years into the future for a variety of policy-relevant "if ..., then ..." scenarios

Air Quality Forecasts: Linkage of NWP models to air quality models for short-term and seasonal air quality forecasts. Assessment of feedbacks between regional air quality and global climate change.